Application of a ring cavity surface emitting quantum cascade laser (RCSE-QCL) on the measurement of H2S in a CH4 matrix for process analytics
نویسندگان
چکیده
The present work reports on the first application of a ring-cavitysurface-emitting quantum-cascade laser (RCSE-QCL) for sensitive gas measurements. RCSE-QCLs are promising candidates for optical gassensing due to their single-mode, mode-hop-free and narrow-band emission characteristics along with their broad spectral coverage. The time resolved down-chirp of the RCSE-QCL in the 1227-1236 cm (8.15-8.09 μm) spectral range was investigated using a step-scan FT-IR spectrometer (Bruker Vertex 80v) with 2 ns time and 0.1 cm spectral resolution. The pulse repetition rate was set between 20 and 200 kHz and the laser device was cooled to 15-17°C. Employing 300 ns pulses a spectrum of ~1.5 cm could be recorded. Under these laser operation conditions and a gas pressure of 1000 mbar a limit of detection (3σ) of 1.5 ppmv for hydrogen sulfide (H2S) in nitrogen was achieved using a 100 m Herriott cell and a thermoelectric cooled MCT detector for absorption measurements. Using 3 μs long pulses enabled to further extend the spectral bandwidth to 8.5 cm. Based on this increased spectral coverage and employing reduced pressure conditions (50 mbar) multiple peaks of the target analyte H2S as well as methane (CH4) could be examined within one single pulse. ©2016 Optical Society of America OCIS codes: (300.6340) Spectroscopy, infrared; (140.5965) Semiconductor lasers, quantum cascade; (280.3420) Laser sensors. References and links 1. B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, “Mid-infrared quantum cascade lasers for flow injection analysis,” Anal. Chem. 72(7), 1645–1648 (2000). 2. J. Kuligowski, G. Quintás, and B. Lendl, “High performance liquid chromatography with on-line dual quantum cascade laser detection for the determination of carbohydrates, alcohols and organic acids in wine and grape juice,” Appl. Phys. B 99(4), 833–840 (2010). 3. Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104(3), 031114 (2014). 4. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670 (1997). 5. G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834 (2001). 6. G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769– 777 (2005). 7. S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013). 8. A. Bismuto, Y. Bidaux, C. Tardy, R. Terazzi, T. Gresch, J. Wolf, S. Blaser, A. Muller, and J. Faist, “Extended tuning of mid-ir quantum cascade lasers using integrated resistive heaters,” Opt. Express 23(23), 29715–29722 #257291 Received 12 Jan 2016; revised 25 Feb 2016; accepted 26 Feb 2016; published 15 Mar 2016 © 2016 OSA 21 Mar 2016 | Vol. 24, No. 6 | DOI:10.1364/OE.24.006572 | OPTICS EXPRESS 6572 (2015). 9. Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasicontinuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 29715–29722 (2015). 10. S. Slivken, S. Sengupta, and M. Razeghi, “High power continuous operation of a widely tunable quantum cascade laser with an integrated amplifier,” Appl. Phys. Lett. 107(25), 251101 (2015). 11. J. Buus, M.-C. Amann, and D. J. Blumenthal, Tunable Laser Diodes and Related Optical Sources (WileyInterscience, 2005). 12. M. Brandstetter, A. Genner, C. Schwarzer, E. Mujagic, G. Strasser, and B. Lendl, “Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy,” Opt. Express 22(3), 2656–2664 (2014). 13. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013). 14. J. H. van Helden, N. Lang, U. Macherius, H. Zimmermann, and J. Röpcke, “Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser,” Appl. Phys. Lett. 103(13), 131114 (2013). 15. J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, “Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL,” Appl. Phys. B 117(1), 113–120 (2014). 16. C. Reidl-Leuthner and B. Lendl, “Toward stand-off open-path measurements of NO and NO(2) in the sub-parts per million meter range using quantum cascade lasers (QCLs) in the intra-pulse absorption mode,” Appl. Spectrosc. 67(12), 1368–1375 (2013). 17. C. Reidl-Leuthner, A. Viernstein, K. Wieland, W. Tomischko, L. Sass, G. Kinger, J. Ofner, and B. Lendl, “Quasi-simultaneous in-line flue gas monitoring of NO and NO2 emissions at a caloric power plant employing mid-IR laser spectroscopy,” Anal. Chem. 86(18), 9058–9064 (2014). 18. C. Reidl-Leuthner, J. Ofner, W. Tomischko, H. Lohninger, and B. Lendl, “Simultaneous open-path determination of road side mono-nitrogen oxides employing mid-IR laser spectroscopy,” Atmos. Environ. 112(2), 189–195 (2015). 19. J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm-1,” Appl. Phys. (Berl.) 85(2), 235–241 (2006). 20. B. Tuzson, M. Mangold, H. Looser, A. Manninen, and L. Emmenegger, “Compact multipass optical cell for laser spectroscopy,” Opt. Lett. 38(3), 257–259 (2013). 21. D. Herriott, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3(4), 523–526 (1964). 22. J. B. McManus, M. S. Zahniser, and D. D. Nelson, “Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number,” Appl. Opt. 50(4), A74–A85 (2011). 23. B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurements of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared continuous-wave quantum cascade lasers,” Appl. Phys. (Berl.) 2, 417423 (2010). 24. B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB Quantum Cascade Laser Arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009). 25. B. G. Lee, H. Zhang, C. Pflugl, L. Diehl, M. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband Distributed-Feedback Quantum Cascade Laser Array Operating From 8.0 to 9.8 μm,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009). 26. M. Carras, G. Maisons, B. Simozrag, V. Trinite, M. Brun, G. Grand, P. Labeye, and S. Nicoletti, “Monolithic tunable single source in the mid-IR for spectroscopy,” Proc. SPIE 8631, 863113 (2013). 27. E. Mujagić, S. Schartner, L. K. Hoffmann, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(1), 011108 (2008). 28. E. Mujagić, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(16), 161101 (2008). 29. E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, and G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett. 96(3), 031111 (2010). 30. E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011). 31. C. Schwarzer, E. Mujagić, S. Il Ahn, A. M. Andrews, W. Schrenk, W. Charles, C. Gmachl, and G. Strasser, “Grating duty-cycle induced enhancement of substrate emission from ring cavity quantum cascade lasers,” Appl. Phys. Lett. 100(19), 191103 (2012). 32. C. Schwarzer, R. Szedlak, S. Il Ahn, T. Zederbauer, H. Detz, A. Maxwell Andrews, W. Schrenk, and G. Strasser, “Linearly polarized light from substrate emitting ring cavity quantum cascade lasers,” Appl. Phys. Lett. 103(8), 081101 (2013). #257291 Received 12 Jan 2016; revised 25 Feb 2016; accepted 26 Feb 2016; published 15 Mar 2016 © 2016 OSA 21 Mar 2016 | Vol. 24, No. 6 | DOI:10.1364/OE.24.006572 | OPTICS EXPRESS 6573 33. R. Szedlak, C. Schwarzer, T. Zederbauer, H. Detz, A. Maxwell Andrews, W. Schrenk, and G. Strasser, “On-chip focusing in the mid-infrared: Demonstrated with ring quantum cascade lasers,” Appl. Phys. Lett. 104(15), 151105 (2014). 34. B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. Maxwell Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett. 101(19), 191109 (2012). 35. A. Harrer, R. Szedlak, B. Schwarz, H. Moser, T. Zederbauer, D. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, B. Lendl, and G. Strasser, “Mid-infrared surface transmitting and detecting quantum cascade device for gas-sensing,” Sci. Rep. 6, 21795 (2016). 36. Z. Liu and D. Wasserman, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” Photonics 18(12), 1347–1349 (2006). 37. W. Uhmann, A. Becker, C. Taran, and F. Siebert, “Time-Resolved FT-IR Absorption Spectroscopy Using a Step-Scan Interferometer,” Appl. Spectrosc. 45(3), 390–397 (1991). 38. T. J. Johnson, A. Simon, J. M. Weil, and G. W. Harris, “Applications of time-resolved step-scan and rapid-scan FT-IR spectroscopy: dynamics from ten seconds to ten nanoseconds,” Appl. Spectrosc. 47(9), 1376–1381 (1993). 39. J. B. McManus, P. L. P. Kebabian, and M. S. M. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34(18), 3336–3348 (1995). 40. H. Siebert, Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie (Springer Verlag, 1966). 41. H. a. Jahn, “A New Coriolis Perturbation in the Methane Spectrum. I. Vibrational-Rotational Hamiltonian and Wave Functions,” Proc. R. Soc. A Math. Phys. Eng. Sci. 168(935), 469–495 (1938). 42. S. N. Mikhailenko, Y. L. Babikov, and V. F. Golovko, “Information-calculating system Spectroscopy of Atmospheric Gases. The structure and main functions,” Atmos. Oceanic Opt. 18(9), 685–695 (2005). 43. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013). 44. R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, and J. S. Garing, “AFCRL atmospheric absorption line parameters compilation,” Environ. Res. Pap. 434, 1–86 (1973). 45. D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasicontinuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004). 46. B. Neidhart and W. Wegscheider, Quality in chemical measurements (Springer Science and Business Media, 2001). 47. W. Chen, A. A. Kosterev, F. K. Tittel, X. Gao, and W. Zhao, “H2S trace concentration measurements using offaxis integrated cavity output spectroscopy in the near-infrared,” Appl. Phys. B 90(2), 311–315 (2008). 48. F. Schmidt, Laser-based Absorption Spectrometry Development of NICE-OHMS Towards Ultra-sensitive Trace Species Detection (2007). 49. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92(3), 313–326 (2008). 50. A. Varga, Z. Bozóki, M. Szakáll, and G. Szabó, “Photoacoustic system for on-line process monitoring of hydrogen sulfide (H2S) concentration in natural gas streams,” Appl. Phys. B 85(2), 315–321 (2006).
منابع مشابه
Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy.
We present the time-resolved comparison of pulsed 2nd order ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs) and pulsed 1st order ridge-type distributed feedback (DFB) QCLs using a step-scan Fourier transform infrared (FT-IR) spectrometer. Laser devices were part of QCL arrays and fabricated from the same laser material. Required grating periods were adjusted to account for the...
متن کاملEffect of variation of specifications of quantum well and contact length on performance of InP-based Vertical Cavity Surface Emitting Laser (VCSEL)
Abstract: In this study, the effects of variation of thickness and the number of quantumwells as well as the contact length were investigated. In this paper, a vertical cavity surfaceemitting laser was simulated using of software based on finite element method. Thenumber of quantum wells was changed from 3 to 9 and the results which are related tooutput power, resonance ...
متن کاملImplementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream
The implementation of a sensitive and selective as well as industrial fit gas sensor prototype based on wavelength modulation spectroscopy with second harmonic detection (2f-WMS) employing an 8-μm continuous-wave distributed feedback quantum cascade laser (CW-DFB-QCL) for monitoring hydrogen sulfide (H2S) at sub-ppm levels is reported. Regarding the applicability for analytical and industrial p...
متن کاملAnalytical Investigation of Frequency Behavior in Tunnel Injection Quantum Dot VCSEL
The frequency behavior of the tunnel injection quantum dot vertical cavitysurface emitting laser (TIQD-VCSEL) is investigated by using an analyticalnumericalmethod on the modulation transfer function. The function is based on therate equations and is decomposed into components related to different energy levelsinside the quantum dot and injection well. In this way, the effect of the tunnelingpr...
متن کاملMonolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design
Quantum cascade lasers (QCLs) have become important laser sources for accessing the mid-infrared (mid-IR) spectral range, achieving watt-level continuous wave operation in a compact package at room temperature. However, up to now, wavelength tuning, which is desirable for most applications, has relied on external cavity feedback or exhibited a limited monolithic tuning range. Here we demonstrat...
متن کامل